The discovery involved “little heroism, more luck than good management, and a starring role for a trainee instrument-maker who dozed off.” Maybe.
When you start looking into the origins of the world’s great inventions, you’ll quickly start finding charming myths and stories almost too good to check. These stories get told over and over again, and, often, grow in the telling. Sometimes, when creators want to indicate that they’re onto something big, the stories are deliberately made dramatic. Sometimes, origin stories gain life because, at the time of the invention, no one knew how important it would become and no one was taking notes. The story of superconductivity, for many years, fit into that first group. In 1911, in a lab at the Netherlands’ Leiden University, physicist Heike Kamerlingh Onnes showed how, below certain critical temperatures, some materials have zero resistance—a discovery that helped create everything from MRI machines to particle accelerators and digital computers.For years, though, the best account of superconductivity’s discovery came from a letter written two decades later. That story, as Dirk van Delft, a historian of science who has taught at Leiden, wrote in 2007, involved “little heroism, more luck than good management, and a starring role for a trainee instrument-maker who dozed off.” “Of course,” he wrote, “the story may well have been embroidered.” It goes something like this: Kamerlingh Onnes’ lab had successfully liquified helium—a major feat in its own right—and created an apparatus that could create and maintain cryogenic temperatures. They started experimenting with different materials to find out when and how their resistance might drop to zero. But when they chilled mercury to the temperature of liquid helium, they found it had zero resistance—which, they thought, couldn’t be right and set it down a short-circuit in the apparatus. They kept redoing the test, though, and getting the same result. Van Delft writes: “What in heaven’s name was going on? The answer did not dawn until the ‘blue-collar boy’ operating the oil manometer [which kept the pressure constant] dozed off, with the result that the pressure in the helium cryostat slowly rose and the temperature rose from just below 4 K to the boil point of helium, 4.25 K. When the transition or critical temperature was passed at which a superconductor regions electrical resistivity, Holst, in lab I, suddenly saw his galvanometer needle swing to the side. Finally, the truth dawned; Leiden had discovered superconductivity.” This was the story that dominated for years—superconductivity was a chance discovery. Nobody knew anything else because Onnes hadn’t been keeping notes. But it turns out that Onnes had been taking notes; it’s just that no one had looked carefully enough at them to find these particular notations. When Van Delft when back a few years later and reinspected the lab books, he did find, he wrote in a 2010 Physics Today article, notes from discovery of superconductivity. The story in those notebooks, though, was less dramatic. In an initial experiment, Kamerlingh Onnes and his team tested three hypotheses—mercury’s resistance should be smaller at 4.3 K than at 14 K (but still measurable); its resistance should be a variable independent of temperature; and at very low temperatures it should become zero—and found them all to be true. In a second experiment, the team documented—on purpose—the resistance of mercury as the temperature rose. (No sleepy lab boy needed—they knew they were letting it rise.) It was, though, a surprise to see mercury’s resistance jump so dramatically, from 4.19 K to 4.2 K—the critical temperature of mercury’s superconductivity. Kamerlingh Onnes, Van Delft writes, hadn’t expected the transition to be so abrupt. But, it turned out, that’s just how superconductivity worked. It hadn’t been exactly what he had meant to find, but it was something new.
-
Archives
- October 2023
- September 2023
- August 2023
- February 2023
- January 2023
- June 2022
- January 2022
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- March 2021
- February 2021
- January 2021
- December 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- November 2017
- October 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- April 2017
- March 2017
- February 2017
- December 2016
- November 2016
- October 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- January 2016
- December 2015
- November 2015
- October 2015
- September 2015
- August 2015
- July 2015
- June 2015
- May 2015
- April 2015
- March 2015
- February 2015
- January 2015
- December 2014
- November 2014
- October 2014
- September 2014
- August 2014
- July 2014
- June 2014
- May 2014
- April 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- May 2013
- April 2013
- February 2013
- January 2013
- December 2012
- November 2012
-
Meta