Helium, the most parsimonious element that invariably sits with its arms tightly folded and refuses to participate in chemistry, turns out to be surprisingly generous when it is in the right environment, willing to donate not just one but two electrons to neighbouring species. Researchers from Austria and the UK made the surprising discovery by generating for the first time isolated dianions – which are inherently unstable and therefore rare – in nanodroplets of helium. The work opens the way to creating other dianions and also to the wider study of helium as an unlikely electron donor. ‘Dianions are important building blocks in chemistry but are often unstable and difficult to make in isolation because of the strong Coulomb repulsion between the two electrons: bringing an electron to an anion has a very high energy barrier,’ explains Jan Verlet of Durham University in the UK, who was not involved in the research. The team, led by Andrew Ellis from the University of Leicester in the UK and Paul Scheier at the University of Innsbruck, suspended clusters of the fullerenes C60 or C70 in nanoscale droplets of liquid helium, held at just 0.4 degrees above absolute zero, and bombarded the nanodroplets with electrons. At the specific energy level of the incoming electron beam, mass spectra showed a clear signal for the presence of dianions of both C60 and C70 clusters, as long as there were more than five fullerene molecules within the clusters. Intriguingly, it appears that two electrons are transferred simultaneously from helium to the fullerene clusters. The researchers suggest the incoming electron beam causes an electron within the helium to be bounced into a higher orbital. This effectively ‘loosens’ the atomic structure, allowing another electron to be accepted, albeit highly weakly bound, to create He-. When this anion meets a fullerene cluster, it apparently transfers two electrons in a single step. ‘It seems that electrons, despite having like charges, have a tendency to act as a pair under certain conditions,’ says Ellis. This is the first time that dianions have been seen in superfluid liquid helium. Ellis says: ‘This finding may challenge our understanding of how electrons are transferred in chemical reactions and shows that new and surprising chemistry is possible in superfluid liquid helium.’ In the future it should be possible to stabilise a range of species with solvents before generating their dianionic form in this way, allowing detailed chemistry and spectroscopy, he suggests. Verlet comments: ‘The idea that the helium anion can be an electron donor provides an exciting new handle to generate exotic molecular species at cryogenic temperatures, which in turn provides the ideal environment to study these new species in unprecedented detail.’
-
Archives
- October 2023
- September 2023
- August 2023
- February 2023
- January 2023
- June 2022
- January 2022
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- March 2021
- February 2021
- January 2021
- December 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- November 2017
- October 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- April 2017
- March 2017
- February 2017
- December 2016
- November 2016
- October 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- January 2016
- December 2015
- November 2015
- October 2015
- September 2015
- August 2015
- July 2015
- June 2015
- May 2015
- April 2015
- March 2015
- February 2015
- January 2015
- December 2014
- November 2014
- October 2014
- September 2014
- August 2014
- July 2014
- June 2014
- May 2014
- April 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- May 2013
- April 2013
- February 2013
- January 2013
- December 2012
- November 2012
-
Meta