Researchers have developed a new mathematical framework capable of describing motions in superfluids – low temperature fluids that exhibit classical as well as quantum behavior. The framework was used to lift the veil of mystery surrounding strange objects in superfluid helium (detected ten years ago at Brown University). The study, conducted by an international collaboration of researchers from the UK, Russia and France is published today in the journal Proceedings of National Academy of Sciences (PNAS). The quantum nature of superfluids manifests itself in the form of quantized vortices, tiny twisters, with the core sizes of the order of an Angstrom (0.1nm – approximately the diameter of an atom) that move through fluid severing and coalescing, forming bundles and tangles. To make these processes even more intricate and distinct from motions in usual classical fluids, these tiny twisters live on the background consisting of a mixture of viscous and inviscid fluid components that constitute superfluid. The mathematical modelling of such complex systems that involve a range of scales is a notoriously difficult problem. The international team of researchers – Natalia Berloff of the University of Cambridge and Skolkovo Institute of Science and Technology, Marc Brachet of Université Pierre-et-Marie-Curie and Nick Proukakis of Joint Quantum Centre Durham-Newcastle – came up with a novel framework for achieving this task. The team applied their method to elucidate an intriguing phenomenon in liquid helium research. Electrons immersed in superfluid helium are useful experimental probes. As they move through superfluid they form soft bubbles of about 2 nm in diameter that get trapped by quantized vortices quite similar to how houses and cars become trapped and transported by a tornado. A research team from Brown University led by Professor Humphrey Maris has studied the effect of oscillating pressures on electron bubbles. As pressure decreases below the criticality, the bubble expands and explodes, reaching micron sizes, with the bubble trapped by a vortex exploding at a pressure larger than that for the free bubble. Maris’ team also discovered another class of object that existed at very low temperatures only and exploded at even larger pressures. They termed these “unidentified electron objects”. The new approach published in PNAS today allowed the researchers to look at the processes as oscillating pressure was applied to a quantum fluid containing a vortex ring at a range of temperatures. The researchers discovered a novel mechanism of vortex multiplication: the vortex core expands and then contracts, forming a dense array of new vortex rings during the contraction stage. They conjectured that it becomes quite likely that the electron bubble becomes trapped by more than one vortex line, furthermore reducing the pressure change needed for consequent explosions. They have also shown that the mechanism of vortex multiplication is suppressed at higher temperatures, explaining why such objects were found experimentally only at lower temperatures. Professor Berloff who led the team commented: “It is fascinating to have a tool to look at the dynamics of processes that occur on the Angstrom lengthscales and at ultra-low temperatures in quantum fluids. The mystery of an unidentified electron object is just a teaser problem; we are ready for other challenges”. “Understanding the intricate features of behavior of quantized vortices is one of the grand unsolved problems that can be tackled with this framework,” added Professor Proukakis.
-
Archives
- October 2023
- September 2023
- August 2023
- February 2023
- January 2023
- June 2022
- January 2022
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- March 2021
- February 2021
- January 2021
- December 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- November 2017
- October 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- April 2017
- March 2017
- February 2017
- December 2016
- November 2016
- October 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- January 2016
- December 2015
- November 2015
- October 2015
- September 2015
- August 2015
- July 2015
- June 2015
- May 2015
- April 2015
- March 2015
- February 2015
- January 2015
- December 2014
- November 2014
- October 2014
- September 2014
- August 2014
- July 2014
- June 2014
- May 2014
- April 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- May 2013
- April 2013
- February 2013
- January 2013
- December 2012
- November 2012
-
Meta